Which of the following functions cannot have their inverse defined ? (where $[.]\, \to$ greatest integer function)
$f : R \to R^+ ; y = e^x$
$f : R^+ \to R ; y = log|x|$
$f:\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right] \to [-1, 1]; y = sin^3x$
$f : R \to R^+ ; y = e^{[x]}$
Let $f:\left[ {4,\infty } \right) \to \left[ {1,\infty } \right)$ be a function defined by $f\left( x \right) = {5^{x\left( {x - 4} \right)}}$ then $f^{-1}(x)$ is
Inverse of the function $y = 2x - 3$ is
If $f(x) = {x^2} + 1$, then ${f^{ - 1}}(17)$ and ${f^{ - 1}}( - 3)$ will be
Which of the following function is inverse function
If $f : R \to R, f(x) = x^2 + 1$, then $f^{-1}(17)$ and $f^{-1}(-3)$ are