- Home
- Standard 12
- Mathematics
1.Relation and Function
normal
Which of the following functions cannot have their inverse defined ? (where $[.]\, \to$ greatest integer function)
A
$f : R \to R^+ ; y = e^x$
B
$f : R^+ \to R ; y = log|x|$
C
$f:\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right] \to [-1, 1]; y = sin^3x$
D
$f : R \to R^+ ; y = e^{[x]}$
Solution
Solution is Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Standard 12
Mathematics