1.Relation and Function
normal

Which of the following functions cannot have their inverse defined ? (where $[.]\, \to$ greatest integer function)

A

$f : R  \to R^+ ; y = e^x$

B

$f : R^+ \to R ; y = log|x|$

C

$f:\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right] \to [-1, 1]; y = sin^3x$

D

$f : R \to R^+ ; y = e^{[x]}$

Solution

Solution is Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.